NEAR MISS abc-TRIPLES IN COMPACTLY BOUNDED SUBSETS

YUKI WADA

ABSTRACT. In the present paper, we study the existence of near miss abc-
triples in compactly bounded subsets. In more concrete terms, we prove that
there exist infinitely many abc-triples such that:
(1) |abc| exceeds a certain quantity determined by the product of the distinct
prime numbers of abc, and, moreover,
(2) a certain value A determined by a, b, ¢, which corresponds to the quantity
“X” in the Legendre form of an elliptic curve, lies in a given compactly
bounded subset.

0. Introduction

First, we review the definition of an abc-triple (cf. Definition 1.5).
Definition 0.1. Let a,b,c € Z be such that

a+b+c=0,
(a,0) =1,
a#0,0#0,c#0.

Then we shall say that the triad of integers (a, b, ¢) is an abc-triple. For an abe-triple
(a, b, c), we define

— )
N(a,b,c) = H b, )\(a,b,c) = T

pEPrimes
plabe

Next, we state the abc Conjecture.

Theorem 0.2 (abc Conjecture). For vy € Ry, there exists a C,, € R such that,
for every abe-triple (a,b, c), the following inequality holds:

max{|al, |b], ||} < ch(lafgc).

In 1988, Masser proved that the v = 0 version of the abc Conjecture does not
hold. The result obtained by Masser (cf. [M], Theorem) is as follows:

Theorem 0.3. Let Ny,vy € R be such that v < % Then there exists an abe-triple
(a,b,c) such that

(Masser 1) Na,b,c) > No,
(Masser 2) |abe| > N(?’mb,c) exp ((log N(a,;w))%*”) .
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Since any infinite collection of abc-triples as in Theorem 0.3 for Ny — +oo yields
a counterexample to the v = 0 version of the abc Conjecture, we shall refer to such
abc-triples as near miss abe-triples.

On the other hand, in [GenEll], Mochizuki introduced the notion of a compactly
bounded subset (cf. [GenEll], Example 1.3, (ii)) and showed that the abc Conjecture
holds for arbitrary abe-triples if and only if it holds for abe-triples that lie (i.e.,
for which the associated “A(,.)” lies) in a given compactly bounded subset (cf.
[GenEll], Theorem 2.1). Before proceeding, we review the definition of a compactly
bounded subset (cf. Definition 1.6).

Definition 0.4. Let r € Q, € € Ry, and X a finite subset of the set of valuations
on Q which includes the unique archimedean valuation co on Q. Write

Ko.s={"eQ||r—rl,<e YveX}
We shall refer to K, . 5 as an (r, e, X)-compactly bounded subset.

(Here, we remark that the use of the indefinite article “an” preceding the expres-
sion “(r, e, X)-compactly bounded subset” results from the usage of this expression
in [GenEll], where one considers compactly bounded subsets of more general hy-
perbolic curves than just the projective line minus three points (which corresponds
to the situation considered in the present paper) over more general number fields
than just Q.)

In the present paper, we prove that the existence of near miss abc-triples that
lie in a given compactly bounded subset. The main result of the present paper is
as follows:

Theorem 0.5. Letr € Q; €, Ng,v € Ryg such that v < %; 3 a finite subset of the
set of valuations on Q which includes the unique archimedean valuation oo on Q;
and K, . s, an (r,e,X)-compactly bounded subset. Then there exists an abe-triple
(a,b,c) such that

(Main 1) N(a,b,c) > No,
(Main 2) |abe| > N(?)a,b,c) exp ((log log N(a,b,c))%_v) )
(Main 3) Aabe) € Kre s

In §1, we establish the notation and terminology used in the present paper.
In §2, we review the statement of Theorem 0.5 (cf. Theorem 2.1) and state the
elliptic curve version of Theorem 0.5 (cf. Theorem 2.7). Also, we discuss a certain
related conjecture. In §3, we review well-known consequences of the Prime Number
Theorem. One such consequence is Theorem 3.9, which estimates the cardinality
of the set

{2/ € Zso|2< 2’ <z, LPN(2') <y, and (2/,n) = 1},

where LPN(—) denotes the largest prime number dividing the integer in parenthe-
ses. This estimate plays an important role in §4. In §4, we prove Theorem 0.5 (i.e.
Theorem 2.1). In §5, we give, for the convenience of the reader, an exposition of
the proof of Masser’s result, i.e., Theorem 0.3, via arguments similar to the argu-
ments given in the proof of Theorem 0.5 in §4. For instance, Lemmas 5.1 and 5.2
correspond to Lemmas 4.1 and 4.4, respectively.

The proof of Theorem 0.5 is divided into Lemmas 4.1, 4.2, 4.3, and 4.4. Lemmas
4.1 and 4.4 are based on the arguments of Masser’s proof. In particular, by applying
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Lemma 4.1 (which corresponds to Lemma 5.1), we obtain an abc-triple that can
in fact be shown (i.e., by applying the arguments of Lemma 4.4 or Lemma 5.2)
to satisfy the conditions (Masser 1) and (Masser 2) of Theorem 0.3, but whose
associated “A” is not necessarily contained in the compactly bounded subset K, . »
of condition (Main 8). This state of affairs is remedied as follows:

e First, we apply Lemma 4.1 to construct a pair of integers (a,b;) which
satisfies the conditions (Masser 1) and (Masser 2) of Theorem 0.3, and
whose associated “\” is contained in a (1, e, X)-compactly bounded subset.

e Next, we apply Lemma 4.2 to construct a pair of integers (ag,bs) (which
does not necessarily satisfy the conditions (Masser 1) and (Masser 2) of
Theorem 0.3, but) whose associated “\” is contained in an (r,e, X\ {o0})-
compactly bounded subset.

e Lemma 4.3 is the key step in the proof of Theorem 0.5 and may be sum-
marized as follows: It follows immediately from the inequalities

b r+e
<o <=
(which are an immediate consequence of the construction of (a1,b1) in

Lemma 4.1), by considering the elementary geometry of the real line, that
there exists an o’ € Z such that

’
o
12 () —rlle <=

We define (a3, b3) to be the unique pair of relatively prime positive integers
such that

by . by (b;)”‘

az = az \ a1 .

Then it follows formally from the defining property of a non-archimedean
valuation that the “A\” associated to the pair of integers (as, b3) is contained
in an (r, e, X)-compactly bounded subset.

e Finally, in Lemma 4.4, we estimate the quantity N, ;) associated to the
abe-triple (a := a3, b := —bs,c:= —a — b) and thus conclude that this abc-
triple (a, b, ¢) satisfies the conditions (Main 1), (Main 2), and (Main 3) of
Theorem 0.5.
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1. Notation

Elementary Notation
Here, we introduce some elementary notation.
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Definition 1.1. Let X be a finite set. Then we shall write X for the cardinality
of X.

Definition 1.2.

(1) Write Z for the ring of rational integers, Q for the field of rational numbers,
R for the field of real numbers, and C for the field of complex numbers.
(2) Let A € {Z,Q,R} and a € A. Then we define

Asgi={d €eA|d >a}, As,:={d €A]|d >a}
(3) Let m,n € Z\ {0}. Then we shall write (m,n) for the greatest common
divisor of |m| and |n|.

Definition 1.3.

(1) Write Primes for the set of prime numbers.

(2) Write V for the set of (archimedean and non-archimedean) valuations on
Q. We denote the unique archimedean valuation on Q by co. Write V¢ :=
{o0}, Vo := V\{oo}. Here, we suppose that ||—||, is normalized as follows:
|Allo = |A| for A € Q if v € V2'¢; there exists a (unique) p, € Primes such
that ||py|l, = py ! if v € Voo,

(3) For p € Primes, write Z, for the ring of p-adic integers and Q, for the field
of p-adic numbers.

Definition 1.4.
(1) Let X be aset and f,g: X — C. We shall write

f=0(9)
if there exists an M € R+ such that, for every z € X,
|f(z)] < M|g(x)].

We shall also write f(x) = O(g(z)) instead of f = O(g).
(2) Let X,Y be sets, U a subset of X x Y, and f,g: U — C. We shall write

f=0y(9)
if there exists an My : Y — Ry g such that, for every (x,y) € U,

We shall also write f(z,y) = Oy(g(z,y)), f(z,y) = Oy(g(z,y)), or f =
O, (g) instead of f = Oy (g).

abe-Triples and Compactly Bounded Subsets
Here, we define abc-triples and compactly bounded subsets, which play an es-
sential role in the present paper.

Definition 1.5. Let a,b,c € Z be such that
a+b+c=0,
(a,0) =1,
a#0,b#0,c#0.
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Then we shall say that the triad of integers (a, b, ¢) is an abe-triple. For an abe-triple
(a,b,c), we define

o )
N(a7b,c) = H b, >\(a7b,c) = T a

pEPrimes
plabe

Definition 1.6. Let r € Q, ¢ € Ry, and ¥ C V a finite subset which includes co.
Write

Kees:={r"eQ||r—rl,<e VveT}h
We shall refer to K, . s as an (r, ¢, 3)-compactly bounded subset.

Definitions Related to Prime Numbers
Here, we define various definitions related to prime numbers.
Definition 1.7. Let i € Z>1, n € Z\ {0}, z,y € Rso.

(1) We denote the i-th smallest prime number by p;.

(2) If n # £1, then we denote the largest prime number dividing n by LPN(n).
If n = £1, then we set LPN(n) := 1.

(3) We define

m(z) := {2z’ € Primes | 2’ < x}.
(4) We define
U(r,y) =8z’ €Z|2 <2 <z, LPN(z') < y}.
(5) We define
U(z,y;n) :=8{2' € Z|2 <2 <x, LPN(z') <y, (2',n) = 1}.
(6) We define
0(z) == Z log p.

Primesdp<x

Facts Related to Elliptic Curves
Here, we review facts related to elliptic curves.

Definition 1.8.
(1) Write Gy, := Spec Z[T, T~*] for the multiplicative group scheme over Z
and G, := Spec Z[T] for the additive group scheme over Z.
(2) Let k be a field. We shall say that E is an elliptic curve over k if E is
an irreducible smooth projective curve over k, dimy I' (E, wE/k) =1, and
there exists a k-morphism e: Spec k — F.

Definition 1.9. Let us consider the equation
E: y? = 2% 4+ a12® + asx + as for a1, as, a3 € Q.

We define the discriminant Dg of E to be the discriminant of the cubic equation
2% + a2 + asx + az. Note that E defines an elliptic curve E over Q if Dy # 0.

Remark 1.10. Let E be as in Definition 1.9. Note that Dg differs from the quantity
“A” that is referred to as the “discriminant” in [S], III.1. According to [S], III.1,
it holds that A = 2*Dy.
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Remark 1.11. Let E be an elliptic curve over Q. Then, in general, an equation “E”
as in Definition 1.9 that gives rise to E is not uniquely determined. In particular,
it does not make sense to speak of the “discriminant Dg associated to E”. On the
other hand, it does make sense to speak of the minimal discriminant associated
to E, as defined in [S], VIIL.8. We shall write D™ for the minimal discriminant
associated to F.

Definition 1.12. Let p € Primes and & := Z,, /pZ,,.

(1) We shall say that E has good reduction at p if there exists a smooth pro-
jective Zy-scheme E’ such that E’ xz, Q, and E xq Q, are isomorphic as
Qp-schemes.

(2) We shall say that E has multiplicative reduction at p if there exists a smooth
group scheme E’ over Z, such that E’ xz Q, is isomorphic to E xq Q,
as a group scheme over Q,, and E’ xz,  is isomorphic to Gy, as a group
scheme over some algebraic closure of k.

(3) We shall say that E has additive reduction at p if there exists a smooth
group scheme E’ over Z, such that E’ xz, Q, is isomorphic to E xg Q,
as a group scheme over Q,, and E’ xz & is isomorphic to G, as a group
scheme over some algebraic closure of k.

(4) We define the conductor Ng of E (cf. Remark 1.13) to be the product

Nei= [ »7®,
pEPrimes

where f,(E) := 0 if E has good reduction at p; f,(E) := 1 if E has
multiplicative reduction at p; and f,(F) := 2 if E has additive reduction
at p.

Remark 1.13. The definition of the conductor given in Definition 1.12 is not quite
correct, but suffices for the purposes of the present paper. For a more detailed
discussion of this “incorrect working definition”, we refer to [S], VIIL. 11.

2. The Main Result

The following theorem is the main result of the present paper. The proof of this
result is given in §4.

Theorem 2.1. Let r € Q; €, Ng,v € Rsq such that v < %; 3 CV a finite subset
which includes 0o; and K, . s, an (r,e,X)-compactly bounded subset (cf. Definition
1.6). Then there exists an abe-triple (a,b, c) such that

(Main 1) N(a,b,c) > Ny,
(Main 2) |abe| > N(Sa,b,c) exp ((log log N(a,b,c))%77> )
(Main 3) )\(a,b,c) S KT,E,E-

For the sake of comparison, we also state Masser’s result. Masser’s proof of this
result is reviewed in §5.
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Theorem 2.2. Let Ny,v € Ry be such that v < % Then there exists an abe-triple
(a,b,c) such that

(Masser 1) Nap,e) > No,
(Masser 2) labe| > N(3a,b,0) exp ((log N(a,b,c))%_’y) :

Our result is motivated by Masser’s. Unlike the abe-triple (a, b, ¢) of Theorem
2.2, the abe-triple (a,b,c) of Theorem 2.1 is subject to the condition that it lie
inside an (r,e, X)-compactly bounded subset (i.e., (Main 3)); on the other hand, the
inequality of Theorem 2.1 (i.e., (Main 2)) is weaker than the inequality of Theorem
2.2 (i.e., (Masser 2)).

Theorem 2.1 may be translated into the language of algebraic geometry (cf.
Theorem 2.7 below), by applying the so-called Frey Curve, which we review in the
following lemma.

Lemma 2.3. Let (a,b,c) be an abe-triple. Thus, the equation
E: y* = z(z +a)(z — b)
defines an elliptic curve E over Q. Then there exists e € {0,1} such that
|Dg| = |abe|®, Ng = 2°N(qp.0).

Proof. Tt follows from the definition of Dy that

|Dg| = |abe|?.
It follows from [S], Chapter VIII, Lemma 11.3 (b) (and its proof) that

Ng =2°Np,c)-

This completes the proof. (I

Remark 2.4. According to [S], Chapter VIII, Lemma 11.3 (a), it follows that there
exists an ¢’ € {0,1} such that

Dgin _ 24—126’|abc|2 _ 24—12e’|D]E|7
where D}Si“ is the minimal discriminant associated to E (cf. Remark 1.11).

Before mentioning the elliptic curve version of Theorem 2.1, we review the state-
ment of (a weakened version of) the Szpiro Conjecture (cf. [IUTchIV], Theorem
A), which played an important role in motivating both [M] and the present paper.

Theorem 2.5 (Szpiro Conjecture). Let 6 € Rwg. Then there exists a Cs € Rxg
such that, for every equation E as in Lemma 2.3, the following inequality holds:

|Dg| < CsNS™.
Remark 2.6. The original Szpiro Conjecture is as follows:

Let 6 € Rsg. Then there exists a Cs € Rsqg such that, for every
elliptic curve E over Q, the following inequality holds:

Dgin < C§Ng+6,
where DB is the minimal discriminant associated to E (cf. Re-
mark 1.11).

It follows immediately from the above statement and Remark 2.4 that Theorem 2.5
is equivalent to the original Szpiro Conjecture.
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By Lemma 2.3, we obtain the following elliptic curve version of Theorem 2.1.

Theorem 2.7. Letr € Q, e € Ry, X C V a finite subset which includes oo, K, . 5
an (r, e, 3)-compactly bounded subset (cf. Definition 1.6), and

My = A{E[E: y* = z(x + a)(x — b) for an abe-triple (a,b,c) s.1.
ANabe) € Krex}
Then, for No,v € Rso such that v < 3, there exist infinitely many equations
E € A, .5 such that
Ng > Ny, |Dg| > NS exp ((loglogNE)%—’Y) )

Remark 2.8. Note that A(, ;) may be regarded as the quantity “A” that appears
in the Legendre form of the corresponding elliptic curve. In particular, even on
M5, if one takes the “0” of Theorem 2.5 to be 0, then the resulting inequality
does not hold. Note that Theorem 2.2 implies that, if one takes the “6” of Theorem
2.5 to be 0, then the resulting inequality does not hold.

Finally, we remark that Theorem 2.1 may be regarded as a weakened version of
the following conjecture, which was motivated by the theory of [ITUTchIV], §1, §2.
This conjecture may be understood as a conjecture to the effect that a version of
Masser’s result (i.e., Theorem 2.2) holds, even when the abc-triple is subject to the
further condition that it lie in a given (r,e,X)-compactly bounded subset K, . 5.

Conjecture 2.9. Letr € Q; €, Ng,v € Rug; X CV a finite subset which includes
oo; and K, 5 an (r,e,X)-compactly bounded subset (cf. Definition 1.6) such that
v < % Then there exists an abc-triple (a,b, ¢) such that

N(a,b,c) > No,

|abe| > N(?’a’b,c) exp ((log N(a,b,g))%_’y) ’
A(a,b,c) € KT,E,E~

3. Review of Well-Known Consequences of the Prime Number Theorem
We shall use (the version that includes the error term of) the Prime Number The-
orem without proof. A proof may be found in [T], I1.4.1, Theorem 1.

Theorem 3.1 (Prime Number Theorem). Let x € R>o. Then there exists a C' €
R such that the following estimate holds:

m(z) =li(z) + O (m exp(—C(log x)%)> ,

li(x) ::/2 @dt.

Before stating various consequences of Theorem 3.1, we prove the following
lemma.

where we write

Lemma 3.2. Let x € R>o, n € Z>1. Then the following estimate holds:

1 _ x _ T x
/2 oz @t = On <<logz>n) = Togayr T On ((logx)"“) :
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Proof. Write
f(z) = _(lozigfc)n —|—/ (logt) dt for x > 2.
2

Since
_ 1 2n _ 1 2n
f’(l‘) — " (logx)™ + (logz)"¥T — = (logx)™ (1 o logx)

is < 0 for x sufficiently large, it follows that there exists an M, € Rs( such that

2x
—W+/2 ot = /() < M.

Thus, it follows that

x
03/2 Gzt & < (g + M-

— 400 as x — 400, it follows that

/; Tt = On (1) -

By applying partial integration and the above estimate, it follows that

x 2 1
/2 Toa 7@ = ey — Mg T 7 /2 Tog 1 4t = GGy + On ( 10gm)”+1>'

This completes the proof. O

; _x
Since oz o)

Theorem 3.1 and Lemma 3.2 easily implies the following two corollaries.

Corollary 3.3. Let x € R>o. Then the following estimate holds:

W(.’E) = @ + (logm)2 +O( 1Ogﬂf) ) !

Proof. First, it follows from Theorem 3.1 that there exists a C' € R+ such that the
following estimate holds:

m(x) =1li(z) + O (ﬂc exp(—C(logm)%))

Next, by applying partial integration to li(x), it follows from Lemma 3.2 that
xT
li(z) :/ 1Oigtdt
2
x
__ = 2 1
_loz;z ~ Tog2 +/2 (log t)? dt
x
— 2 2 2
7102:10 " Tog2 + (logm)2 " (log2)2 +/2 (logt)3 dt

=z + e O ()

Finally, it follows from an elementary calculation that

exp(—C’(logw)%) =0 (m) .

Thus, it follows that

Tr(x) = logx + (10g(£)2 + o ((logx)g) :

This completes the proof. O
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Corollary 3.4. Let x € R>y. Then the following estimate holds:

9(x)=x+o(m).

Proof. The estimate in question may be obtained by computing Lebesgue-Stieltjes
integrals, applying Lemma 3.2 as follows:

() T
Z logp; = / logt dm(t)
i=1 2-0
=m(z)logz — / @dt
2-0

~ot g +0 (i) - [ (ke +0 ()

=+ (i)

Here, we note that the estimate of the third equality follows by applying the esti-
mate of Corollary 3.3. (]

In order to prove Theorem 2.1, it will be necessary to apply certain estimates
concerning ¥ functions. The various estimates concerning ¥ functions discussed
in the remainder of the present §3 involve a real number “y” that satisfies only
rather weak hypotheses. In fact, in the proof of the main results of the present
paper in §4, it will only be necessary to apply these estimates in the case where
y = (log x)%. On the other hand, we present these estimates for more general “y”
since it is possible that these more general estimates might be of use in obtaining
improvements of the main results of the present paper.

Proposition 3.5. Let x € Rsg,y € R>o. Then the following inequality holds:

(y) m(y)

(log )™ (log z)™¥) log pi
— < U(z,y)+1 < ————— < | 1+ E
() (17 log i) (@,9)+1< w(y)!- (T4 10g p: ) e logw

Proof. Let j € Z>q. Write t := w(y) and
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t
A:={(n,...,ny) € 7 |Znilogpi <logz,

i=1
n; >0fori=1,...,t},
t—1

Aj={(n1,...,ng1) € Z1 |Znilogpi <logx — jlogp,
i=1

n; >0fori=1,...,t—1},

t
V= {(Tl,...,Tt) € Rt |Zrllogpz < IOgZ',

i=1
T ZOfori:I,...,t},
t—1

Vi = {(riee oo rerome) € RY Y rylogps < loga — jlogp,,
i=1
ri>0fori=1,...,t—1,
jgrt <]+]—}v

t t
Vi={(ry,...,m) € R |Zrilogpi < logm—&—Zlogpi,
i=1 i=1
r; >0fori=1,...,t}.

Note that
— _ (oga)"
u(V) = t1-(TTt_; logpi)
) — _(logz—jlogp,)'™"_
p(Vi) = (t—1)!-(TTiZq logpi )’
. t
0 — (1ogz+25=110gm)t — (log 2)* e
wV) = (Tt logp:)  t(TT'_, logp:) 1+ 2 gz | °

where we write p for a Lebesgue measure. -
In the following, we compare fA with u(V') and u(V).
First, let us prove that

w(V) < gA.

We shall use induction on ¢.

The case where t = 1 is clear, since, in this case, §A is the smallest integer which
is larger than ll(fgg;l .
Next, we consider the case where t > 2. It follows from the induction hypothesis

that

u(Vi) <.
Thus, we obtain the inequality

oo

p(V) <> u(Vy) < D #A; = A,
j=0

Jj=0
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Next, let us prove that
A < p(V).

Write
t

Ing,omgy =] [ [nisni +1) SR
i=1

Since p(I(,,....n,)) = 1, it clearly follows that

fA = 1 U Townn | S (V).
(n1,..ey ny)EA

This completes the proof. (]
By restricting the size of y and applying Corollary 3.3, we obtain the following

two corollaries. The first one was obtained by V. Ennola [E] (cf. [N], p.25). Readers
may skip it because it is not used in the present paper.

Corollary 3.6. Let z,y € R be such that 2 < y < (logz)2. Then the following
estimate holds:

__ (logm)™® ( (y7)>
\I/(x’y)+17w(y)!'(H?i?logm) O )

Proof. We apply the inequalities of Proposition 3.5. Thus, it suffices to estimate
the expression

7(y) () m(y)

1+ e =exp | m(y)log [ 1+ ) 8B
i=1 t=1

Since log(1+2) < z for z € Ry (recall that the function z — log(1+ z) is concave),

m(y) m(y)
logp; logp;

exp | 7(y)log | 1+ Tog <exp | 7(y) ogz |
i=1 i=1
and it follows immediately from Corollary 3.4 that
m(y) .
exp | 7(y) —ﬁgg’;j = exp <7”(fé)g iy)) = exp (O (%gé?)) )

=1

Note that, for M € Ry, there exists a C' € Ry such that exp(z) < 1 4+ Cz for
0 < z < M (recall that the function z — exp(z) is convex). Since the assumption
that 2 <y < (log x)% implies that

exp (yﬂ(y)) < Y2 <1,

log z — logx —

we obtain the estimate
ym(y) |\ — ym(y)
exp (O (zogyz )) =1+ o (’%ogyz ) :
Finally, it follows from Corollary 3.3 that
Ty _ 2
1+0 <7{ogi ) =1+0 (logglogy) '

This completes the proof. ([l
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The second corollary is an exponential version of Proposition 3.5, obtained by
V. Ennola [E] (cf. [N], p. 25).

Corollary 3.7. Let z,y,v € Rsq be such that 2 < y < (logz)” and v < 1. Then
the following estimate holds:

U(x,y) = exp (W(y) loglogz —y + O, (m)) .

Proof. We apply the inequalities of Proposition 3.5. Since

m(y) m(y)
(log z)™(¥) _ .
— - —exp | 7(y)loglogx — logi — loglogp; |,
o () — P (y) loglog ; g 2 g log p;
it suffices to estimate the expressions
() ~(y) )
Zlogz Zloglogpz, 1+ lloogT’;"
i=1

First, let us estimate the expression Z logz By applying Stirling’s formula,
we obtain the estimate

m(y)
; logi = <7r(y) + ;) log m(y) — 7(y) + O(1).

Moreover, by applying Corollary 3.3, together with the estimate log(1+ oey) < Togy

for M € Ry, we obtain the estimates

log7(y) =logy — loglogy + O (logy)

1
m(y) + 9 = (logy + (logy)2 +0 ((logyy)3>> ’

Then it follows from the above two estimates that
1 .
(7o) + 5 ) o) = y-+ ey — sl — slesbes 4 0 ()

Thus, we obtain the following estimate

7(y)
S logi =y - vleslony _wloslogy 4 o (Y,

Next, let us estimate Zf:(yl) loglog p;. By computing Lebesgue-Stieltjes integrals,
it follows that

m(y) y .
Z IOg Ingz = / 10g log t dﬂ'(t) = 7T(y) log log Yy — / t71r(§tg)t dt.
2-0 B

By applying Corollary 3.3 and Lemma 3.2, we obtain the following two estimates

log lo; log lo,
(y)loglogy = YE08Y 4 $PEBEY 4 O ((log’"’y)2) ,

/:Ogc(fg)tdt /:0((1 77 dt =0 ()
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Thus, it follows that

m(y)
Z loglogp7 = yl(ffgl(;gy + yloglogy +0 ((logy)Q) .

(log y)?

By combining the above estimates, it immediately follows that

(log x)”(y)
m(y)!- (Hf:(ﬁ) log pi

5 = e (st ogton 1+ 0 (1))

m(y)
Finally, let us estimate (1 + Z”(y) ll‘(’)gg L ) . By a similar calculation to the

calculation applied in the proof of Corollary 3.6, we obtain the estimate

(y) 7(y)

1+Z ben ) —exp(0(42).

Since

m(y) _ _
e =0 () =01 (e
yY
it follows immediately that
m(y)
log p; _ y
o] =ew (0 (whe))-
i=1
This completes the proof. ([

Finally, we give estimates for various versions of V.

Theorem 3.8. Let x,y,7 € Rsg such that 2 <y = (logx)” and v < 1. Then the
following estimate holds:

U(z,y) =exp ((* - 1) v+ ey T O ((logyu)Q))
—exp (2 - 1) Gloga) + sz + 0, (g )).

Proof. By applying Corollary 3.3 and Corollary 3.7, we obtain the following esti-
mate

U(z,y) =exp (%w(y) logy —y+ O, (m))
=0 (3 (v-+ 0 (wdie)) ~ 7+ O (e
—exp (2= 1) v+ ey + 0 ()
—exp (1 - 1) Cloga) + o522 + 0, (gl )).

This completes the proof. O

Theorem 3.9. Let x,y,v € Ryg, u € Z>1, and q1, ..., q, € *Primes such that, for
i=1,...,u, 2 < ¢ <y=(logz)” and v < 1. Write D := [[}_, q;. Then the
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following estimate holds:

V(z,y; D) =exp ((7 - 1) y+ wlogy + Oy ((logy) ))
logx log z)”
=exp ((* - 1) (logz)” + =% l(ogglog:c + Oy (@JW)) :

Proof. First, we introduce some notation. Let z € R. We denote the largest integer
<z by [z]. Let w; € Ry \ {1}, wo € Ryg. Then we shall write log,,, ws := log w

log wy °

1
Note that wlogw1 = w,.

It follows immediately from the definitions that ¥(z,y; D) < ¥(z,y). Next, by
classifying the “z”’s” that occur in the definition of “¥(z,y)” by the extent of their
divisibility by the ¢;’s, we obtain the following estimate:

ot m(ln)

j1=0 Ju=0

E ()

J1=0 Ju=0

< (H (llog,, =] + 1)) U(z,y; D).

i=1

On the other hand, since for p € Primes, logp? > 1, and logz > 1,

f[ (llog,, ] +1) =exp (Zu: log ([log,, ] + 1))

i=1

<exp (Z log(2log x + 1))

=1
<exp (u(log(3logx)))

log x)”
=exp (O%u (W)) ’

Thus, it follows from Theorem 3.8 that

W(a,y; D) =exp (1 —1) (loga)” + L1520 + 0, (legsl.))

1
=exp ((; - 1) Y+ 'ylogy + Oy (ﬁ)) :

This completes the proof. ([l

4. Proof of Theorem 2.1

First, for ease of reference, we review the statement of Theorem 2.1:

Let r € Q; €, Ng,y € Rog such that v < %; > CV a finite subset
which includes co; and K, . s an (1, €, X)-compactly bounded subset
(cf. Definition 1.6). Then there exists an abc-triple (a,b,c) such
that

N(a,b,c) > No,
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|abe| > N(3a7b,c) exp ((log log N(a’b’c))%—v) :

Aabe) € Kre s

Before beginning the proof, we recall from §1 that, for r € Q, € € Ry, co € ¥ C
V such that ¥ is a finite subset,

Kies={r'eQ||r—r|, <e, Yv e T}

It follows immediately from the definition of “K, . x” that, given a finite subset
= C Q, we may assume without loss of generality, in the statement of Theorem
2.1, that » ¢ Z and € < 1. In particular, by taking = to be {0,1} we may assume
in the following that 7 # 0,1. Next, let us recall that A4 p.) = —g. Since, for

every abe-triple (a,b,¢), Aa,ep) = 1= Nab,e)s and A a,c) = we may assume

Aa,b,e)
without loss of generality, in the statement of Theorem 2.1, that » > 1. Finally, in

a similar vein, it follows immediately from the definition of “K, . »” that we may
assume without loss of generality, in the statement of Theorem 2.1, that r —e > 1.
Next, we introduce notation as follows:

e Write
Ef = \ {OO}

e Let § € Ry be such that
0 < 12.

Then observe that there exists a §' € R+ such that

8 <12, 1220 5 12— 4.
(1+36)2

o Write

D:= ] »o

vES
(so D=1if 3y =0).
o We define g € Primes to be the smallest odd prime number such that
q> Ny
and, for v € Xy,
q# po, [I7flw =1,
where we write
wevV
for the g-adic valuation on Q.

e We define
£ <e.

e & < =
€ T max(roYees = r
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e We define J € Z>; to be the smallest positive integer such that, for v € 3¢,

1 /
- < ¢
py =77

g € Z>1 to be the smallest positive integer such that

exp (%) <1+4¢.

e In the following discussion, we shall construct an element
o € R>3

which depends only on r, €, ¥, Ny, and §. Note that D, ¢, €/, J, and g
depend only on r, €, 3, and Ny. Let

z € Rsyy.

Write
y := (log x)%.

We define G € Z>; to be the smallest positive integer such that
G > glogx.

Thus, for a suitable choice of xq, it follows from Theorem 3.9 (where we
take 7 to be 1) that

1 e e
¥opi D) =exp ((oga)? + 4252+ 0 (2525 )) . ()

e Observe that there exists a unique I € Z such that
LW(z,y;D-q) <GD’q" < U(z,y;D - q). (f2)

It follows immediately from the estimate ({;) that, for a suitable choice of
o, we may suppose that I > 1.

Lemma 4.1. For a suitable choice of xq, there exists a pair of positive integers

(a1,b1) such that

(1) LPN(a;) <y, LPN(b;) <y,

(2) (a'lvbl):]-7 (alaD'Q)zly (b17Dq):17
(3) 1<a; <z, 1<b <z,

(4) H%—l”vgsl forve Xy,

(5) l<i<i4d,

(6) e — 1, < .

Proof. First, let us recall the estimate (},)

GD’¢' < W(z,y;D - q).
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Thus, by considering the residue classes modulo D”q! of the set of integers that
appears in the definition of ¥(x,y; D - q), we conclude from the Box Principle that
there exists a sequence of G 4 1 integers 2 < sg < --- < sg < x such that

LPN(s;) <y fori=0,...,G,

(siyD-q)=1fori=0,...,G,

5 = s; mod D7¢’ fori,j=0,...,G.
_ 1
Next, let us suppose that s;;1 > x9logz.g; fori =0,...,G—1. Since G > glogx,

it follows immediately that

_1 _G

x> Ssg >xIlosr .50 1 > >qgologr .50 > xs) >

— a contradiction. Thus, there exists an iy € Z such that

0<ig<G—1,
1
Sig < Sig41 S wglogzg,
1
Since z9logr = exp (%) < 1+¢€, it follows that
Sig < Sig+1 < (1 + EI)SZ'O.

We define a1, b1 € Z>; as follows:

(a1,b1) =1,
by . Sigt1
al : S'iO :

Then it follows immediately from the definition of (a1,b;) that (aq,b;) satisfies
conditions (1), (2), (3), (4), (5), and (6) of Lemma 4.1. This completes the proof.
]

Lemma 4.2. For a suitable choice of xq, there exists a pair of positive integers
as, bs) such that

1
2

) LPN(as) <y, LPN(b2) <y,

) (az2,b2) =1, (az,q) =1, (b2, q) =1,

3) 1<as <z, 1<by <exp (exp (3(10gx)%>),
4)

5)

||Z—z —rlly <€ forve Xy,

(
(
(
(
(
(

b 1
Hﬁ - 1||w < P

Proof. First, since ¢ is an odd prime number, there exists an hg € 7Z such that
(Z/q?Z)* is generated as a group by the image of hg in (Z/q?Z)*. Note that
(Z/q'7Z)* is also generated as a group by the image of hg in (Z/q'Z)*. Thus, it
follows from the Chinese Remainder Theorem that there exists an h € Z>; such
that, for v € Xy,

h =1mod D7, h = hy mod ¢>.
Next, since ||7||,» = 1, there exists a u € Z such that

||u_%Hw < q% <1
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Thus, since (u,q) = 1, and the image of h in (Z/q'Z)* generates (Z/q'Z)*, it
follows that there exists a positive integer n < ¢ such that

" =1 mod D’, k" = umod ¢'.
Let us estimate h™. First, for a suitable choice of xg, we have
h <uy.

Next, it follows from the definition of G and the inequality (f,) that

I
h" < y? =exp (¢’ logy) < exp (1‘;%3%“1/(96,@/; D- q))
< exp (2}3%701%;;\1'(@ y; D - q)) .
Finally, it follows from the estimate (f;) that, for a suitable choice of z,
exp (2}3%;701%&\1/(:3, y; D - q)) < exp (exp (2(10gx)5)) .
Thus, it follows that
A" < exp (exp (2(log x)%)) .
We define the pair of positive integers (az,bs) as follows:
(a27b2) = 17
Z—z :=rh".
Since, for v € Xy,
Irh"™ = rllo = lIrllo - 12" = Ll < 7]l - " <,
k™ =1l = lIrllw - A" = u+u = Lo < max{[|A" = ullw, [lu = Fllw} < 5,

it follows immediately from the definition of (as, by) that (ag, be) satisfies conditions
(2), (4), and (5) of Lemma 4.2.
Let rq, 7 € Z>1 such that

For a suitable choice of xg, it follows that
re <y <x,rp <Y < exp (exp ((logx)%)) .
Thus, it follows that
1<as <ry, <z, 1<by <mph™ < exp (exp ((1 —|—2)(10gx)%)) ,

and hence that (ag, b2) satisfies conditions (1) and (3) of Lemma 4.2. This completes
the proof. O
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Lemma 4.3. For a suitable choice of xg, there exist a pair of positive integers
as,bs) and an a € Zx( such that
1) LPN(a3) <y, LPN(b3) <y,
2) (az,b3) =1, (a3, q) = 1, (b3, q) =
) 1<ag <zt 1<b3<a® exp(exp( (log x) %))
4) Hg—z—rﬂvgeforveil,
) 122 — 1w < 1,

) 0§C¥§(E1+6

(
(
(
(3
(
(5
(6

Proof. Tt follows from Lemmas 4.1 and 4.2 that, for a suitable choice of x(, there
exist a pair of positive integers (a1, b;) which satisfies the conditions of Lemma 4.1,
and a pair of positive integers (as, by) which satisfies the conditions of Lemma 4.2.
Since
l<B <46 <148=rfe e

r — r—e’
it follows immediately, by considering the elementary geometry of the real line, that
there exists an o/ € Z such that

’
[e%
12 ()" —rle <e.

Next, let us prove that, for v € X,

’
«
I (2)" e 1% (2) 1l

Since v € Xy is a non-archimedean valuation on Q, and (a1, D-q) =1, (b1, D-q) =1,
||% =1, <€, ||Z—1 — 1w < q% (cf. conditions (2), (4), and (6) of Lemma 4.1), it
follows that, for v € Xy,

Oll
) ey 1(2)" — 1 < 4

ma e < Ty 204 (01, 0:0) =1, (b1, D) =1, gz =7l <
g, ||¢% — 1y < (TI (cf. condition (2) of Lemma 4.1 and conditions (4) and (5) of
Lemma 4.2), it follows that, for v € Xy,
()
ai

a/
O B [CSIC
as al az ay
v

<max{e, &|r|,} <e,
’
by (g)“ 1
as aq

el () ()

1
We define a3, b3 € Z>1,a € Z>( as follows:

ql”
(as,b3) =1,

!
by _ by (1)
ag_az al ’

=|d|.

Thus, since ¢’ =

IN

w

IN
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It follows immediately from the definitions of (ag,b3) and « that (as,bs) and «
satisfy conditions (1), (2), (3), (4), and (5) of Lemma 4.3.

Next, let us estimate «. First, since i < 2—"; <exp (exp (3(log .I)%)) (cf. condi-
tion (3) of Lemma 4.2), and 1 <r —¢& < Z—i < r+e¢, it follows that

o’ -1
() - () "0
al az as

(%)a/ = (Z%)_l Z% > exp <— exp (3(log:c)%)> .

Next, observe that, for a suitable choice of z(, we have
r+e<zx.

Thus, it follows that

exp (— exp (3(logw)%)) < (Z—ll) < a2,
ie.,
—exp (3(1ogm)%) < ' log (%) < 2log .

In particular, it follows immediately from the above estimate that

alog (2—11) = |’ log (2—11) | < max { exp (3(logx)%) ,210ga:}.
Since, for a suitable choice of xg,

2logz < exp (3(10gm)%) ,

we thus conclude that, for a suitable choice of zq,
alog (%) < exp (3(10g m)%) .
Moreover, since 1+ 1 <1+ lel = “Z—Tl < 2—11 (cf. conditions (3) and (5) of Lemma
4.1), and log2 < log (1 + %)w for z > 1, it follows that
% < alog (1 + %) < alog (Z—ll) < exp (3(logac)%> .
Thus, it follows that, for a suitable choice of xg,
o<zt

i.e., « satisfies condition (6) of Lemma 4.3. This completes the proof. O
Lemma 4.4. There exists an abc-triple (a,b,c) such that

(1) N(a,b,c) > N(),
1
(loglog N(4 b,c)) 2
(2) |abc| s N(?)a,b,c) exp ((12 o 6/) logglogglog(Nl(’a,l,c)) ’

(3) )‘(a,b,c) € Kr,s,2~
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Proof. 1t follows from Lemma 4.3 that, for a suitable choice of ¢, there exist a pair
of positive integers (a3, bs) and an o € Z>o which satisfy the conditions of Lemma
4.3.

Let

a:=az, b:= —bsz, c:= —ag + b3.

Since Z—i >r—e > 1 (cf. condition (4) of Lemma 4.3), ¢ # 0. Thus, it follows
from condition (2) of Lemma 4.3 that (a,b,c) is an abe-triple. Next, observe that,
since I > 1, it follows from conditions (2) and (5) of Lemma 4.3 that ¢ | ¢. Since
q| cand Ny < ¢ € Primes, it follows that (a,b, ¢) satisfies condition (1) of Lemma
4.4, i.e., N(gp,c) > No. Finally, since A4 p.c) = —g, it follows from condition (4) of
Lemma 4.3 that (a,b,c) satisfies condition (3) of Lemma 4.4. Thus, it suffices to
show that (a, b, ) satisfies condition (2) of Lemma 4.4.

First, since LPN(a3) < y, LPN(b3) < y (cf. condition (1) of Lemma 4.3), it
follows that

II p< I p=ew6w).

pEPrimes, pEPrimes,
plab p<y

Next, since (a3, ¢) = 1 and HZ—; 1 < q% (cf. the conditions (2) and (5) of Lemma
4.3), and I > 1, it follows that

Ie.

q

Thus, it follows from the definition of N, ) that

N(a,b,c) = H p H p| < eXp(e(y)) : qIIC—‘1 .

pEPrimes, pEPrimes,
plab ple

Next, since the positive integers as and bs satisfy the inequalities Z—z >r—e>1
and Z—z <r+e¢ (cf. condition (4) of Lemma 4.3), it follows immediately that

bl = lel, lal = (bl

Thus, it follows that

3 3
labe| > zle’ 2 s (Nabe exp(=0(y))a")” = Cr (Niap,e) exp(=0(y))a")",

where we write C7 := Next, since logx > logzg > log3 > 1, it follows

1
(r4+e)g3”
from the inequality (f,) that

I ¥(z,y;D-q) log = V(z,y;D-q) 1 Y(z,y;D-q) _ ~ ¥(z,y;D-q)
q¢ =z GD7q > (glogz+1)D7q log > (g+1)D7q log = logz
where we write Cy := m. Thus, it follows that

. 3 . 3
|abc| Z Clcfg) (N(a,b,c) exP(?Oeg(z))ql(zava'Q)) — CB (N(a‘b,c) exp(;c)eg(z))w(m7va'Q)) ,
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where we write C3 := C,C3. Note that C3 depends only on 7, &, 3, and Ny. Thus,
it follows from Corollary 3.4 and the estimate (f;) that

exp(=0(y))¥(z,y;D-q)
log x

1
= exp (—(logx)é +0 ((lglgifg);)z>> X
1 1
oxp ((tog )t + 452t + 0ps (it ) ) »
exp(—log log x)
1 1
= exp (4 togioas + Ot (a“ﬁﬁm)) :

and hence, for a suitable choice of xq, that

1
log x)2
|abc| > N(Ba,b,c) €xXp <(12 - 6) Eogglo;i'> :

Finally, let us estimate N, ). First, it follows from the estimate of N,y
obtained above, together with the definition of ¢ and the inequality Z—‘Z > 1, that

Nap,e) < exp(8(y)) - [e] < exp(6(y)) - []-

Next, for a suitable choice of xg, it follows from Corollary 3.4 and conditions (3)
and (6) of Lemma 4.3 that

exp(6(y)) < exp(2(logz)?),

[b] = b3 < 2=’ exp (exp (3(log m)%)) .

Next, for a suitable choice of x, it follows from an elementary calculation that
exp (2(10g x)% + exp (3(10g :c)%)) <2

Thus, we conclude that, for a suitable choice of xg,

p1+28
N(a,b,c) <z ;

ie.,
loglog Ngp,c) < (1 + 26)logz + loglog .
In particular, for a suitable choice of z, it holds that

loglog N(ap,c) < (1 +39) log .

Next, observe that we may assume without loss of generality that
loglog Ny > exp(2).
Since the function

1
z2

Z'—)l
og z

for z € R>exp(2)
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is strictly monotone increasing, ﬁ > 12 — ¢, and N(gp.e) > No, it follows
+36)2
that, for a suitable choice of xg,

1
0 ((12 - o)feszl? )

12-5  loglogz+log(1+33)  ((1438)loga)?
(1+35)2 log log = " Tog((1+33) log z)

1+36) log x
> (m )it

(12— &) (loglogN<abL>>z>

2 logloglog N(q,b,c)

Thus, it follows that (a, b, ¢) satisfies condition (2) of Lemma 4.4, i.e.,

3 7\ (loglog N(a b)) 2
|abe| > N, ) exp <(12 —9 )lglglogzv(b)>

This completes the proof. O

Proof of Theorem 2.1. Observe that there exists an M € Ry such that, for z €

R>M7
log z oY
T2 <%

Now we apply Lemma 4.4. Observe that we may assume without loss of generality
that

loglog Ny > M.
Since Nqp,¢) > No, it follows that

logloglog N(4.p,c
ot < (loglog Nig )"

Thus, we conclude that

1
labe| > NE, o) exp ((12 _ ) Uoslog Neu ) )

logloglog N(a,b,c)

> N?a,b,c) exp ((log log N(a7b7c))%*7) ,
as desired. ([l

5. Appendix: Proof of Theorem 2.2

First, for ease of reference, we review the statement of Theorem 2.2:

Let Ny,v € Ry be such that v < % Then there exists an abc-triple
(a,b,¢) such that
N(a,b,c) > No,
|abe| > N(?’mb,c) exp ((log N(a’bm))%*W) .

Next, we introduce notation as follows:
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e Let 6 € Ry be such that
6 < 12.

Then observe that there exists a 8’ € R+ such that

§ <12, (;i;)‘;% >12-4.
e We define ¢ € Primes to be the smallest odd prime number such that
q > Np.
Write w € V for the g-adic valuation on Q.
e In the following discussion, we shall construct an element
To € Roj
which depends only on Ny and 6. Note that g depends only on Ny. Let
T € Rsygy.
Write
y := (log x)%.
We define G € Z>; to be the smallest positive integer such that
G > logx.

Thus, for a suitable choice of xg, it follows from Theorem 3.9 (where we
take v to be 1) that

1 og T ogx 3
W(eyia) = exp ((oga) + afeil + 0 (2t ). )

e Observe that there exists a unique I € Z such that
L0(z,y;9) < Gg' < U(z,y50). (f2)

It follows immediately from the estimate (f;) that, for a suitable choice of
o, we may suppose that I > 1.

Lemma 5.1. For a suitable choice of xq, there exists a pair of positive integers

(a1,b1) such that

(1) LPN(a1) <y, LPN(b1) <,

(2) (a1,01) =1, (a1,9) = 1, (b1,q) = 1,
(3) 1<a; <z, 1<b; <u,

(4) 1< <3,

(5) 12— 1 < &

Proof. First, let us recall the estimate (1)
Gq' < (z,y;9).
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Thus, by considering the residue classes modulo ¢’ of the set of integers that appears
in the definition of ¥(z,y; ¢), we conclude from the Box Principle that there exists
a sequence of G + 1 integers 2 < sg < -+ - < sg < x such that
LPN(s;) <y fori=0,...,G,
(siyq) =1fori=0,...,G,
S =8; mod ¢! fori,j=0,...,G.

1
Next, let us suppose that s;41 > xlogz . s; fori =0,...,G — 1. Since G > log z,

it follows immediately that
_1 _G
T >8> w8 o551 > >qglogr .50 > w50 >
— a contradiction. Thus, there exists an iy € Z such that

0<ip<G-—1,
_1
Sip < Sig+1 < I’IOgISiO.

1
Since zlosz = exp(1) < 3, it follows that

Sip < Sig+1 < 3Si0.

We define a1, b € Z>; as follows:

(alvbl) = ]-7
by . Sig+1
al T si() :

Then it follows immediately from the definition of (a1,b1) that (aq,by) satisfies
conditions (1), (2), (3), (4), and (5) of Lemma 5.1. This completes the proof. [

Lemma 5.2. There exists an abc-triple (a,b,c) such that

(1) N(a,b,c) > NO»

1

® el > N0 (12 ) (e ).
Proof. 1t follows from Lemma 5.1 that, for a suitable choice of xg, there exists a
pair of positive integers (a1, b;) which satisfies the conditions of Lemma 5.1.

Let

a:=ay, b:=—-by, c:=—ay + by.

Since 2—1 > 1 (cf. condition (4) of Lemma 5.1), ¢ # 0. Thus, it follows from
condition (2) of Lemma 5.1 that (a,b,c) is an abe-triple. Next, observe that, since
I > 1, it follows from conditions (2) and (5) of Lemma 5.1 that ¢ | ¢. Since ¢q | ¢
and Ny < ¢ € Primes, it follows that (a, b, ¢) satisfies condition (1) of Lemma 5.2,
i.e., Nap,c) > No. Thus, it suffices to show that (a,b,c) satisfies condition (2) of
Lemma 5.2.

First, since LPN(a;) < y, LPN(b;) < y (cf. condition (1) of Lemma 5.1), it

follows that
II r< I »p=ex0).

pEPrimes, pEPrimes,
plab p<y
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L (cf. conditions (2) and (5) of Lemma

Next, since (a1,¢) = 1 and H% 1w < o1

5.1), and I > 1, it follows that
¢ |e

Thus, it follows from the definition of N, ) that

I[I »|<ew®w) 7%

N(a,b,c) < H p
pEPrimes, pEPrimes,
plab ple

Next, since the positive integers a; and by satisfy the inequalities Z—ll > 1and (% <3

(cf. condition (4) of Lemma 5.1), it follows immediately that
[l > e, lal > 31b].

1

Thus, it follows that
3
labe| > §le® > 355 (N, xp(=0(y))q")" = C1 (Niapp.e) exp(—0(y))g" )",

Next, since logz > logzg > log3 > 1, it follows from

where we write C} := 3.

the inequality (I,) that
I~ ¥Y(z,959) logz _ ¥(z,y;q)
T = Gq z (longrLl)q logz
L Thus, it follows that

where we write Cy := 2
N 3 ex — xT M 3
|labe| > C1C3 (N<a=b,c> expl(o—;;y))&”(mvw) — s (N<a,b,c> pfogf;(y))m( ,y,q>) ,
where we write C3 := C;C3. Note that Cs depends only on Ny. Thus, it follows

C Y(z,y59)

1 Y(zy9)
2 log x

= 2q logz

Y

from Corollary 3.4 and the estimate (f;) that

exp(—0(y)) ¥ (z,y;q)
log x

;
= exp (—(log :c)% +0 ((lgg‘%o?;V)) X

exp ((loga)? + 42l 40 (el ) )

exp(—loglog x)
(logz) %

1
— (log )2
= &xp (410(;;1§gx +0 ((loglogm)2)> ’
and hence, for a suitable choice of xq, that
1
log )2
|abe| > N(?’a’b’c) exp <(12 —9) Eoogg]g;i) )
Finally, let us estimate N, ). First, it follows from the estimate of N,y
obtained above, together with the definition of ¢ and the inequality % > 1, that

Napey < exp(0(y)) - [c] < exp(8(y)) - [b].
Next, for a suitable choice of g, it follows from Corollary 3.4 and condition (3) of

Lemma 5.1 that )
exp(0(y)) < exp(2(log z)2),
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Next, for a suitable choice of x, it follows from an elementary calculation that
exp (2(10g a:)%) < a°.

Thus, we conclude that
N(a,b,c) < x1+67
i.e.,
log Nap,e) < (14 6)log .

Next, observe that we may assume without loss of generality that
log Ny > exp(2).
Since the function

1
z2

zZ= log 2z

for z € R>exp(2)
is strictly monotone increasing, % >12—4', and N4,y > No, it follows that,
144)2

for a suitable choice of zg,
1
o ((12- pzat)

1
« 12—6  loglogz+log(1+d) = ((1+4)logz)?2
P (1+6)% log log = log((146) log )

log((1+0) log )
1
(108 No b.ey) 2
exp ((12 —0 )k)glgzv()) '

Thus, it follows that (a, b, ¢) satisfies condition (2) of Lemma 5.2, i.e.,

> exp <(12 — 5’)7((1”) log )2 >

v

1
(log N(a,p,e)) 2
|abc\ > N(Ba,b,c) exXp ((12 - 5/) logglog(Nl()a,)b,c) ) .

This completes the proof. ([

Proof of Theorem 2.2. Observe that there exists an M € R<( such that, for z €

R>M7

log z
1255, <.

Now we apply Lemma 5.2. Observe that we may assume without loss of generality
that

10gN0 > M.

Since Nqp,¢) > No, it follows that

loglog N4 p,c

e < (log Niap,o)"-
Thus, we conclude that

1
(10 N a,b,c )§
labe| > NE, ;. exp ((12 - 5’)logglog<N‘gafb,C)>

1_
> N?a,b’c) exp ((log Nape)? 7) ’
as desired. O
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